Tractor Tire and Ballast Management

No votes yet
Your rating: None


Careful management of ballast and tire inflation pressure can maximize tractive efficiency, minimize compaction, increase tractor drivetrain life and increase profitability.

Tractive efficiency measures how well a tractor uses the power available at the axle to pull an implement through the soil. Improving tractive efficiency reduces costs through improved fuel efficiency and increases the productivity of your tractor. Improving tractive efficiency doesn't usually require an investment in new equipment. The time spent in improving tractive efficiency provides immediate fuel savings and improved performance.

Lightly ballasted tractors and tire inflation pressures maintained at minimum levels for safe operation and satisfactory tire life also protect the soil. Overinflated tractor tires are a common cause of poor tractive efficiency and compaction. Large forces from overinflated tires and over-ballasted tractors compact the soil, squeezing soil particles closely together and reducing pore space. Crops grown in soils damaged by compaction are less likely to survive moisture extremes such as heavy rain and droughts. Low inflation pressures and properly ballasted tractors minimize the forces applied to the soil surface, which minimizes compaction and improves long-term productivity of the soil.

The best approach to maximizing tractor performance and minimizing compaction is to first select an equipment set that is best suited to the tractor that will pull it. Ideally, each piece of equipment should be sized so that the tractor delivers maximum power to the soil at speeds of 4 to 5 miles per hour. If a tractor is used for both primary and secondary tillage or light-duty work such as planting, the primary tillage implements should be relatively narrow and the light-duty implements should be wider so that each implement requires similar total draft forces when pulled at appropriate speeds.

William W. Casady
University of Missouri Extension